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For the Laplace–Stieltjes integrals new description of the exceptional set in asymptotic
upper estimates in terms of the maximum of the integrand function is obtained.

О. Б. Скаскив, Д. Ю. Зикрач. О неулучшаемом описании исключительного множества
в асимптотических оценках интегралов Лапласа–Стильтьеса // Мат. Студiї. – 2011. –
Т.35, №2. – C.131–141.

Для интегралов Лапласа-Стильтьеса получено новое описание исключительного мно-
жества в асимптотических оценках сверху через максимум подинтегральной функции.

Let R+ = (0,+∞). For x, y ∈ Rp
+, we denote

〈x, y〉 =

p∑
i=1

xiyi, |x| =
( p∑
i=1

x2i

) 1
2
, ‖x‖ =

p∑
i=1

xi.

Let ν be a countably additive nonnegative measure on Rp
+ with unbounded support

supp ν, f(x) an arbitrary nonnegative ν-measurable function on Rp
+. By Ip(ν) we denote the

class of function F : Rp → [0,+∞) of the form

F (σ) =

∫
Rp+
f(x)e〈σ,x〉ν(dx), σ ∈ Rp. (1)

By ν(E) we denote the ν-measure of a ν-measurable set E ⊂ Rp.

The class of nonnegative continuous functions ψ(t) on [0,+∞) such that ψ(t) → +∞
as t → +∞ is denoted by L, the subclass of functions ψ ∈ L such that ψ(t) ↗ +∞ as
t → +∞ is denoted by L+; L1 is the subclass of L consisting of functions ψ ∈ L such that∫ +∞ dt

ψ(t)
< +∞; L+

1 = L1 ∩L+; L2 is the class differentiable concave functions ω ∈ L+ such
that

1

t
= O(ω′(t)) (t→ +∞);
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L0
2 is the subclass of L which contains functions ω ∈ L2 such that for all function ε(t)→ +0

(t→ +∞)

ω′(t)↘ 0 (t→ +∞) i lim
t→+∞

ω′((1− ε(t))t)/ω′(t) = 1;

L3 is the class of differentiable functions ω ∈ L such that ω′(t) ln t = o(1) (t→ +∞) and for
all function ε(t)→ +0 (t→ +∞)

1

ω′(tε(t))
= o

(
1

ω′(t)

)
(t→ +∞).

Example. For

ω(t) = tα, 0 < α < 1, ω(t) = (ln t)1+β, β ≥ 0,

we have ω ∈
⋂4
j=2 Lj.

1. Asymptotic relations with restrictions only to the measure: a new description
of exceptional sets. In papers [1, 2] the problem of obtaining asymptotic upper estimates
of functions F ∈ Ip(ν) (for p = 1 in [1]) via

µ∗(σ, F ) = sup{f(x)e〈σ,x〉 : x ∈ supp ν}

with restrictions only to the measure ν was considered.
Theorem 6 ([1]) implies that for each function F ∈ I1(ν) as soon as the function ω ∈ L2

condition

(∃ψ1 ∈ L+
1 , ψ2 ∈ L1) : lim

t→+∞
ω′(ψ−11 (t)) ln ν1(t−

√
ψ2(t); t+

√
ψ2(t)] ≤ d, (2)

holds for ν1(a, b] = ν({t ∈ R : a < t ≤ b}), then there exists a set E ⊂ [0; +∞) finite
Lebesgue measure such that

lim
σ→+∞,
σ 6∈E

(ω(lnF (σ))− ω(lnµ∗(σ, F ))) ≤ d. (3)

In the general case, according to [9, 10] the finiteness of the measure of an exceptional
set E in relation

ω(lnF (σ))− ω(lnµ∗(σ, F )) ≤ d+ o(1) (4)

with d = 0 is the best possible description. It is proved in [9, 10] for entire Dirichlet series
and ω(x) = ln x, i.e. for integrals of the form (1) with an atomic measure ν =

∑
δλn , where

δλn is a unit measure concentrated at the point λn (Dirac’s measure). The such proposition
is contained in Theorem 1 ([2]) in the case of the class Ip(ν) (p ≥ 2).

Theorem A. (Theorem 1([2])) Let ν0(0, t] = ν({x ∈ Rp : ‖x‖ < t}), t > 0. Then for each
function F ∈ Ip(ν) satisfying (2) with ν1(a, b] = ν0(a, b] = ν({x ∈ Rp : a < ‖x‖ ≤ b}), there
exists a measurable set E ⊂ Rp such that

measp(E ∩ C(R)) = O(Rp−1) (R→ +∞) (5)
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and the relation (4) holds as |σ| → +∞ (σ ∈ K\E), where K ⊂ Rp is an arbitrary real cone
with the vertex at the point O = (0, . . . , 0) such that

K\{O} ⊂ γ(F ) = {σ ∈ Rp : lim
t→∞

1

t
lnF (tσ) = +∞},

and C(R) is a direct unbounded cylinder with the axis {σ ∈ Rp : σ1 = σ2 = . . . = σp} and
guide surface be a (p− 1)-dimensional ball of radius R > 0 centered at the point O.

Note ([1]) that condition (2) with d = 0 and ω ∈ L3 is equivalent to the condition∫ +∞

t0

k(ln ν1(0, t])

t2
dt < +∞, t0 > 0, (6)

where k(t) is the inverse function to 1
ω′(t)

.
Therefore, choosing the measure ν such that for each bounded set G ⊂ Rp

ν(G) =
+∞∑
‖n‖=0

δλn(G), (7)

where δλ(G) is a unit Dirac’s measure concentrated at point λ, then Theorem A yields
Theorem 3 [3] for entire multiple Dirichlet series

F (z) =
+∞∑
‖n‖=0

ane
〈z,λn〉, (8)

where Λp = (λn)+∞‖n‖=1 is a fixed sequence such that λn = (λ
(1)
n1 , . . . , λ

(p)
np ) for n = (n1, . . . , np) ∈

Zp+ and 0 ≤ λ
(j)
k ↑ +∞ (k → +∞) for all 1 ≤ j ≤ p.

By H(Λp) we denote the class of entire multiple Dirichlet series with a fixed sequence of
the exponents Λp = (λn). For F ∈ H(Λp) and σ ∈ Rp

+ we denote

M(σ, F ) = sup{|F (σ + iy)| : y ∈ Rp}, µ(σ, F ) = max{|an|e〈σ,λn〉 : n ∈ Zp+}.

For each measurable set E ∈ Rp and α > 1 we define

τα(E) =

∫
E

dσ1 . . . dσp
|σ|α−1

.

If we choose ω(x) = ln x, then condition (6) can be rewritten as∫ +∞

0

d ln ν1(0, t]

t
< +∞ ν1(a, b] = ν{x ∈ Rp : a < ‖x‖ ≤ b}.

In [4, 5, 6] it is proved that if the last condition is satisfied for ν1(0, t] = nλ(t) =
∑
‖λn‖≤t 1,

then for each entire multiple Dirichlet series F ∈ H(Λp) and for each cone K with the vertex
at the origin O = (0, . . . , 0) such that K\{O} ⊂ Rp

+, Borel’s relation

lnM(σ, F ) = (1 + o(1)) lnµ(σ, F ) (9)
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is valid as |σ| → +∞, σ ∈ K\E, where the set E ⊂ Rp
+ such that

τp(E) < +∞. (10)

And this description of exceptional set in Borel’s relation is the best possible in a certain
sense. For entire Dirichlet series H(Λ1) (that is the class H(Λp) for p = 1) similar results
was obtained in [8, 9, 10]. Note that this, in particular, implies that in the case of the class

Ip =
⋃
ν

Ip(ν)

the description of an exceptional set in relation

lnF (σ) ≤ (1 + o(1)) lnµ∗(σ, F ) (11)

can not be improved considerable.
The aim of this paper is to prove that in the class Ip condition (6) implies relation (4)

with d = 0 outside an exceptional set satisfying condition (10). The following theorem is
true.

Theorem 1. Let F ∈ Ip(ν). If the condition∫ +∞

0

d ln ν0(0, t]

t
< +∞, (12)

holds, then the relation

lnF (σ) ≤ (1 + o(1)) lnµ∗(σ, F ) (13)

holds as |σ| → +∞, σ ∈ K\E, where K is an arbitrary real cone in Rp
+ with the vertex at

the point O such that K\{O} ⊂ Rp
+ and the set E satisfies (10).

Proof. For σ0 ∈ Rp
+, |σ0| = 1, we define

νσ0(0, t] = ν({x ∈ Rp
+ : 〈σ0, x〉 ≤ t}).

Let F ∈ Ip(ν). Without loss of generality, we suppose that F (0) = 1.
For fixed σ0 ∈ Rp

+, |σ0| = 1, we consider the function g(t) = lnF (tσ0), t ∈ R+. It is
proved in [2] (Proposition 5) that g(t) is a convex function for t > 0. Let us consider the
probabilistic space Ω = Rp

+ with the probabilistic measure

P (dx) = f(x)et〈σ0,x〉
ν(dx)

F (tσ0)
.

and the random variable ξ = 〈σ0, x〉. Similar to [2] we can prove that Mξ = g′(t).
It is proved in [2] (Proposition 5′) that for every K real cone with the vertex at the point

O such that K \ {O} ⊂ γ(F )

lim
|σ|→+∞, σ∈K

lnF (σ)

|σ|
= +∞.

Since, Rp
+ ⊂ γ(F ), we obtain

g′(t) ≥ g(t)− g(0)

t
=

lnF (tσ0)

t
≥ inf

{
lnF (tσ)

t
: |σ| = 1, σ ∈ K

}
→ +∞ (t→ +∞).
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So, g′(t)→ +∞ (t→ +∞).
By Markov’s inequality P{ξ > a} ≤ Mξ

a
(a > 0) for a = 2Mξ = 2g′(t) and x = tσ0, we

have P{ξ > 2g′(t)} ≤ 1
2
. Thus,

F (tσ0) =

∫
{x∈Rp+ : 〈σ0,x〉≤2g′(t)}

f(x)et〈σ0,x〉dν(x) +

∫
{x∈Rp+ : 〈σ0,x〉>2g′(t)}

f(x)et〈σ0,x〉dν(x) ≤

≤ µ(tσ0, F )ν({x ∈ Rp
+ : 〈σ0, x〉 ≤ 2g′(t)}) + F (tσ0)P ({x ∈ Rp

+ : 〈σ0, x〉 > 2g′(t)}) ≤

≤ µ(tσ0, F )νσ0(0, 2g
′(t)] +

1

2
F (tσ0).

Hence,
F (tσ0) ≤ 2µ(tσ0, F )νσ0(0, 2g

′(t)]. (14)

Let ([5]) y∗ := inf{inf{yj : y = (y1, . . . , yj, . . . , yp), |y| = 1, y ∈ K} : 1 ≤ j ≤ p}. Since
K\{O} ⊂ Rp

+, we have y∗ > 0, and for y ∈ K, |y| = 1, t ∈ R+, we obtain

νy(0, t] = ν({x ∈ Rp
+ : 〈y, x〉 ≤ t}) ≤ ν({x ∈ Rp

+ : y∗‖x‖ ≤ t}) = ν0

(
0,

t

y∗

]
.

Applying the previous inequality to (14), we have

F (tσ0) ≤ 2µ(tσ0, F ) sup{νy(0, 2g′(t)] : y ∈ K, |y| = 1} ≤ 2µ(tσ0, F )ν0

(
0,

2g′(t)

y∗

]
. (15)

We prove that ∃ψ ∈ L+
1 : ln ν0(0, t] = o(ψ−1(t))(t→ +∞) holds. We denote

l(t) =

+∞∫
t

ln ν0(0, t]

t2
dt, C(t) = (l(t))−

1
2 (t > 0).

Since
+∞∫
0

d ln ν0(0, t]

t
=

ln ν0(0, t]

t
+

+∞∫
0

ln ν0(0, t]

t2
dt < +∞,

we have C(t)↗ +∞(t→ +∞). Now, we choose a positive function ψ increasing to +∞ as
t→ +∞ such that the inverse function has the form

ψ−1(t) =

{
C(t) ln ν0(0, t], if t ≥ t0,
1
2
C(t0) ln ν0(0, t0](1 + t

t0
), if t ∈ [0; t0],

where t0 > 0 such that C(t0) ln ν0(0, t0] > 0. Therefore,

+∞∫
t0

ψ−1(t)

t2
dt =

+∞∫
t0

C(t) ln ν0(0, t]

t2
dt = −

+∞∫
t0

dl(t)√
l(t)

=

= 2(l(t0))
1/2 = 2

( +∞∫
t0

ln ν0(0, t]

t2
dt

)1/2

< +∞.
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It is clear that ψ is nondecreasing, hence
+∞∫
A

ψ−1(t)

t2
dt ≥ ψ−1(A)

A
. Thus, by Cauchy’s criterion

we have t = o(ψ(t)) (t→ +∞). Therefore, since

+∞∫
0

dt

ψ(t)
=

t0∫
0

dt

ψ(t)
+

+∞∫
t0

dt

ψ(t)
,

+∞∫
t0

dt

ψ(t)
=

+∞∫
ψ(t0)

dψ−1(t)

t
=
ψ−1(t)

t

∣∣∣∣∣
+∞

ψ(t0)

+

+∞∫
ψ(t0)

ψ−1(t)

t2
dt < +∞,

we obtain ψ ∈ L+
1 and ln ν0(0, t] = o(ψ−1(t)) (t→ +∞).

We denote E(σ0) = {σ = tσ0 : t > 0, 2
y∗
g′(t) > ψ(g(t))} for fixed σ0 ∈ K, and

E =
⋃

|σ0|=1,σ0∈Rp+

E(σ0).

Then for σ = tσ0, σ ∈ K\E we have

lnF (σ) ≤ ln 2 + lnµ∗(σ, F ) + ln ν0

(
0,

2g′(t)

y∗

]
= lnµ∗(σ, F ) + o

(
ψ−1

(2g′(t)

y∗

))
≤

≤ lnµ∗(σ, F ) + o(ψ−1(ψ(lnF (σ)))) = lnµ∗(σ, F ) + o(lnF (σ)) (|σ| → +∞).

Hence, the relation (13) holds as |σ| → +∞ (σ ∈ K \ E).
Let S1 = {σ ∈ K : |σ| = 1}. Finally, we obtain the following estimate for the exceptional

set E

τp(E ∩ Rp
+) =

∫∫
E

dσ

|σ|p−1
=

∫
S1

( ∫
E(σ0)

dt

)
ds ≤ 2

y∗

∫
S1

( ∫
E(σ0)

g′(t)

ψ(g(t))
dt

)
ds ≤

≤ 2

y∗

∫
S1

( g(+∞)∫
g(0)

du

ψ(u)

)
ds ≤ C

+∞∫
0

du

ψ(u)
< +∞.

Theorem 1 is completely proved.

Necessity of condition (12) in Theorem 1 for p = 1 is proved in [11]. It follows from
Theorem 3 ([11]) that if a measure ν is a countably additive measure on R+ such that

+∞∫
0

d ln ν(0, t]

t
= +∞, ln ν(0, t] = O(t) (t→ +∞),

where ν(0, t] = ν({x ∈ R+ : x ≤ t}), then there exists a nonnegative function F ∈ I1(ν), a
constant d > 0, and a fixed point σ0 > 0 such that for all σ ≥ σ0

lnF (σ) ≥ (1 + d) lnµ(σ, F ). (16)

If p ≥ 2 and a measure ν on Rp
+ is a direct product of countably additive measures νj on

R+ then the necessity of condition (12) in Theorem 1 follows from the following theorem.
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Theorem 2. Let ν be a direct product of countably-additive measures νj on R+, ν =
ν1 × . . . × νp. If condition (12) does not hold and ln ν0(0, t] = O(t) (t → +∞), then there
exist a function F ∈ Ip(ν), a constant d > 0, and a measurable set E such that for all σ ∈ E
inequality (16) holds and τp(E) = +∞.

Proof. If condition (12) does not hold and ln ν0(0, t] = O(t) (t → +∞), then there exists
j ∈ {1, . . . , p} such that

+∞∫
0

d ln νj(0, t]

t
= +∞, ln νj(0, t] = O(t) (t→ +∞), (17)

where νj(0, t] = ν{x ∈ R+ : x ≤ t}.
Without loss of generality we may suppose that condition (17) holds for j = 1. Then by

Theorem 3 ([11]) there exists a function

F1(σ1) =

+∞∫
0

f1(x)eσ1xdν1(x),

such that for σ1 ≥ σ0 the inequality lnF1(σ1) ≥ (1 + d) lnµ∗(σ1, F1) holds.
Convexity of lnµ(t, F1) implies that l(t) = 1

t
lnµ(t, F1) ↗ +∞ (t → +∞). We choose

l1(t) ≡ ln l(t) and l2(t) = tl(t)/l1(t). It is easy to see that
1

t
l2(t) ↑ +∞ (t0 ≤ t ↑ +∞).

Therefore, there exist positive functions fj(y), j ∈ {2, . . . , p} such that for each s ≥ t0 and
j ∈ {2, . . . , p}

sup{ln f2(y) + ys : t0 ≤ y < +∞} ≤ 1

p
l2(s).

For each σ ∈ Rp
+ we define the functions

Fj(s) =

+∞∫
t0

fj(y)esydνj(y), F (σ) =

∫
Rp+

f1(y1)f2(y2) · · · fp(yp)e〈σ,y〉dν(y).

Since for each s ∈ R and j ∈ {2, . . . , p} Fj(s) < +∞, we have F ∈ Ip(ν).
Let t ≥ t0. Then

p∑
j=2

lnµ(s, Fj) =

p∑
j=2

sup{ln fj(y) + ys : y ∈ supp νj ∩ [t0; +∞)} ≤

≤
p∑
j=2

sup{ln fj(y) + ys : t0 ≤ y < +∞} ≤
p∑
j=2

1

p
l2(s) = l2(s) = o(lnµ(s, F1)) (s→ +∞),

that is, (
1 +

d

2

) p∑
j=2

lnµ(s, Fj) ≤
d

2
lnµ(s, F1)
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for all sufficiently large s.
Since

ν(0; t] = ν{y ∈ Rp
+ : ‖y‖ ≤ t} ≤

p∏
j=1

νj(0, t]

and Fj(s) ≥ 1 for all 2 ≤ j ≤ p, we obtain the following inequality

lnF (σ) ≥
p∑
j=1

lnFj(σj) ≥ lnF1(σ1) ≥ (1 + d) lnµ(σ1, F1) ≥

≥
(

1 +
d

2

)
lnµ(σ1, F1) +

d

2
lnµ(σ1, F1) ≥

(
1 +

d

2

)
lnµ(σ1, F1)+

+

(
1 +

d

2

) p∑
j=2

lnµ(σ1, Fj) ≥
(

1 +
d

2

) p∑
j=1

lnµ(σj, Fj).

for σ ∈ E = {σ ∈ Rp
+ : σ1 ≥ t0, t0 ≤ σj ≤ σ1 j ∈ {2, . . . , p}}

It remains to note that for all σ ∈ E

lnµ(σ, F ) =

p∑
j=1

lnµ(σj, Fj).

We show that τp(E) = +∞

τp(E) =

∫
E

dσ1 . . . dσp
|σ|p−1

=

∫ +∞

t0

dσ1

∫ σ1

t0

dσ2 . . .

∫ σ1

t0

dσp
|σ|p−1

≥

≥
∫ +∞

t0

dσ1

∫ σ1

t0

dσ2 . . .

∫ σ1

t0

dσp
(σ1
√
p)p−1

=

∫ +∞

t0

(σ1 − t0)p−1

(σ1
√
p)p−1

dσ1 = +∞.

Theorem 2 is completely proved.

Conjecture. Condition (12) in Theorem 1 is necessary in the case when the measure ν on
Rp

+ is arbitrary. Is it true in general case?

For the class H(Λp) the description (10) of a exceptional set in Borel’s relation (9) can
not improved in the following sense.

Theorem 3 ([6]). Let h ∈ L+. There there exists a sequence Λp = (λn)n∈Zp+ satisfying the
condition

+∞∫
0

d lnn0(t)

t
dt < +∞, (18)

a function F ∈ H+(Λp), a constant d > 0 and a measurable set E ⊂ Rp
+ such that:

1. (∀ x ∈ E) : lnM(x, F ) ≥ (1 + d) lnµ(x, F );

2.
∫
E

h(|x|)dx1 . . . dxp
|x|p−1

= +∞.



ASYMPTOTICAL ESTIMATES FOR LAPLACE–STIELTJES INTEGRALS 139

Corollary 1. For each function h ∈ L+ there exist a countably additive measure ν on Rp
+,

satisfying condition (12), a function F ∈ Ip(ν), a constant d > 0 and a measurable set
E ⊂ Rp

+ such that:

1. (∀ σ ∈ E) : lnF (σ) ≥ (1 + d) lnµ∗(σ, F );

2.
∫
E

h(|x|)dσ1 . . . dσp
|σ|p−1

= +∞.

Proof. We choose the measure ν of the form (7). Then condition (18) is equivalent to condi-
tion (12), and it remains to apply the previous theorem.

This completes the proof of Corollary 1.

Theorem 4. Let F ∈ Ip(ν), ω ∈ L2, k(t) be the inverse function to 1
ω′(t)

. If condition (6)
holds for ν1(0, t] = ν0(0, t], then relation (4) with d = 0 holds as |σ| → +∞, σ ∈ K\E, where
K is an arbitrary real cone in Rp

+ with the vertex at the point O such that K\{O} ⊂ Rp
+,

and for the measurable set E (10) holds.

Proof. Without loss of generality we may suppose that F (0) = 1. Repeating arguments
similar to that in proof of Theorem 1 in the part of obtaining inequalities (15), and saving
notation, we obtain

F (tσ0) ≤ 2µ(tσ0, F )ν0

(
0,

2g′(t)

y∗

]
. (19)

We prove that ∃ψ ∈ L+
1 : ln ν0(0, t] = o(ψ−1(t))(t → +∞). As above we define the

function

l(t) =

+∞∫
t

k(ln ν0(0, t])

t2
dt, C(t) = (l(t))−

1
2 (t > 0).

As in the proof of Theorem 1 we have ∃ψ ∈ L+
1 : k(ln ν0(0, t]) = o(ψ−1(t)) (t → +∞).

Since k(t) is the inverse function to 1
ω′(t)

and ω ∈ L2 we obtain

ln ν0(0, t] = o(k−1(ψ−1(t))) = o
( 1

ω′(ψ−1(t))

)
= o(ψ−1(t)) (t→ +∞).

It now follows from the proof of Theorem 1 that inequality (13) holds as σ = tσ0, σ ∈
K\E1, where

E1 =
⋃

|σ0|=1, σ0∈Rp+

E1(σ0), E1(σ0) =
{
σ = tσ0 : t > 0,

2

y∗
g′(t) > ψ(g(t))

}
.

Moreover τp(E ∩ Rp
+) < +∞.

Hence

lnµ∗(σ, F ) ≥ 1

2
lnF (σ) (|σ| → +∞) (20)

as σ = tσ0, σ ∈ K\E1.
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Since ω ∈ L2, ω
′ is a decreasing function. Then from (15) and by the mean value

Lagrange’s theorem of finite increments we obtain

ω(lnF (σ))− ω(lnµ∗(σ, F )) ≤ ω′(lnµ∗(σ, F ))(lnF (σ)− lnµ∗(σ, F )) ≤

≤ ω′(lnµ∗(σ, F ))
(

ln 2 + ln ν0

(
0,

2g′(t)

y∗

])
as σ = tσ0, σ ∈ K\E1.

Let

E2 =
⋃

|σ0|=1, σ0∈Rp+

E2(σ0), E2(σ0) =
{
σ = tσ0 : t > 0,

2

y∗
g′(t) > ψ

(g(t)

2

)}
.

Then for σ = tσ0, σ ∈ K\(E1 ∪ E2),

ω′(lnµ∗(σ, F )) ≤ ω′
(1

2
lnF (σ))

)
= ω′

(1

2
g(t))

)
≤ ω′

(
ψ−1

(2g′(t)

y∗

))
as |σ| → +∞.

Since
ln ν0(0, t] = o(k−1(ψ−1(t))) = o(1/ω′(ψ−1(t))) (t→ +∞),

we have

ω(lnF (σ))− ω(lnµ∗(σ, F )) ≤ ω′(lnµ∗(σ, F ))
(

ln 2 + ln ν0

(
0,

2g′(t)

y∗

])
≤

≤ ω′
(
ψ−1

(2g′(t)

y∗

))(
ln 2 + o

(
ψ−1

(2g′(t)

y∗

))
= o(1) + ω′

(
ψ−1

(2g′(t)

y∗

))
ln 2. (21)

Therefore ψ−1 is nondecreasing and ω ∈ L2, we obtain (4).
Finally, we obtain the following estimate for the exceptional set E = E1 ∪ E2

τp(E2 ∩ Rp
+) ≤ 2

y∗

∫
S1

( ∫
E2(σ0)

g′(t)

ψ(g(t)
2

)
dt

)
ds ≤ 2

y∗

∫
S1

( g(+∞)∫
g(0)

du

ψ(u
2
)

)
ds ≤

≤ C

+∞∫
0

dt

ψ(t)
< +∞.

Since τp(E1 ∩ Rp
+) < +∞, we have τp(E ∩ Rp

+) < +∞.

In [3] an analogue of Theorem 4 for the class H(Λp) is proved.

Theorem 5 ([3]). Let ω ∈ L3 ∩ L4 ∩ L5. For each function F ∈ H(Λp) the relation

ω(lnM(σ, F ))− ω(lnµ(σ, F )) = o(1) (22)

holds |σ| → +∞ (σ ∈ K \ E,measp(E ∩ Sr) = O(rp−1) (r → +∞)) if and only if

+∞∫
0

k(lnn0(t))

t2
dt < +∞, (23)
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holds, where K is an arbitrary cone K ⊂ Rp with vertex in point such that (K \ O) ⊂
{σ ∈ Rp : limt→+∞

1
t

lnµ(tσ, F ) = +∞}, Sr is a cylinder, which obtains from the cylinder
S ′r = {x = (x1, ..., xp) ∈ Rp : x22 + ...+ x2p ≤ r2} by turning the coordinate system so that the
axle Ox1 moves in ray {x ∈ Rp : x1 = x2 = ...+ xp}.

From the proof in [3] necessary condition (23) in Theorem 5 and from Theorem 4 we
obtain the following theorem.

Theorem 6. Let F ∈ H(Λp), ω ∈ L2 ∩ L4 ∩ L5, k(t) be the inverse function to the function
1

ω′(t)
. For each function F ∈ H(Λp) relation (22) holds as |σ| → +∞, σ ∈ K\E, where K is

an arbitrary real cone in Rp
+ with the vertex at the point O such that K\{O} ⊂ Rp

+ and
measurable set E satisfied (10) if and only if condition (23) holds.

Proof. Sufficiency. We choose the measure ν of the form (7). Then condition (18) is equiva-
lent to condition (12). It remains to apply Theorem 4.
Necessity. The necessity of condition (23) one can prove in a similar way to the proof of
Corollary 3 ([3]), where for all σ ∈ E = {σ ∈ Rp

+ : σ1 ≥ t0, σ1 ≥ max{σ2, σ3, ..., σp}}
relation (22) holds, and that for this set τp(E) = +∞ (see. proof of Theorem 2).
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